DINÁMICA


La dinámica es la parte de la física que describe la evolución en el tiempo de un sistema físico en relación con las causas que provocan los cambios de estado físico y/o estado de movimiento. El objetivo de la dinámica es describir los factores capaces de producir alteraciones de un sistema físico, cuantificarlos y plantear ecuaciones de movimiento o ecuaciones de evolución para dicho sistema de operación.
El estudio de la dinámica es prominente en los sistemas mecánicos (clásicos, relativistas o cuánticos), pero también en la termodinámica y electrodinámica. En este artículo se describen los aspectos principales de la dinámica en sistemas mecánicos, y se reserva para otros artículos el estudio de la dinámica en sistemas no mecánicos.

La Fuerza 

La fuerza es una magnitud física de carácter vectorial capaz de deformar los cuerpos (efecto estático), modificar su velocidad o vencer su inercia y ponerlos en movimiento si estaban inmóviles (efecto dinámico). En este sentido la fuerza puede definirse como toda acción o influencia capaz de modificar el estado de movimiento o de reposo de un cuerpo (imprimiéndole una aceleración que modifica el módulo o la dirección de su velocidad) o bien de deformarlo.
Comúnmente nos referimos a la fuerza aplicada sobre un objeto sin tener en cuenta al otro objeto u objetos con los que está interactuando y que experimentarán, a su vez, otras fuerzas. Actualmente, cabe definir la fuerza como un ente físico-matemático, de carácter vectorial, asociado con la interacción del cuerpo con otros cuerpos que constituyen su entorno.
El término fuerza se usa comúnmente para referirse a lo que mueve un objeto; por ejemplo la fuerza necesaria para cargar un avión.
DINAMÓMETRO  Se denomina dinamómetro a un instrumento utilizado para medir fuerzas o para pesar objetos. El dinamómetro tradicional, inventado por Isaac Newton, basa su funcionamiento en la elongación de un resorte que sigue la ley de Hooke en el rango de medición. Al igual que una báscula con muelle elástico, es una balanza de resorte, pero no debe confundirse con una balanza de platillos (instrumento utilizado para comparar masas).
Estos instrumentos constan de un muelle, generalmente contenido en un cilindro que a su vez puede estar introducido en otro cilindro. El dispositivo tiene dos ganchos o anillas, uno en cada extremo. Los dinamómetros llevan marcada unaescala, en unidades de fuerza, en el cilindro hueco que rodea el muelle. Al colgar pesos o ejercer una fuerza sobre el gancho exterior, el cursor de ese extremo se mueve sobre la escala exterior, indicando el valor de la fuerza.
COMO REALIZAR UN DINAMÓMETRO



Característica de la Fuerzas: 

  1. Magnitud: consiste en el mayor o menor grado de fuerza aplicada para producir un cambio de forma o movimiento. También es conocida como la intensidad que representa la cantidad de fuerza aplicada sobre el objeto.
  2. Dirección: establece la  o trayectoria en que se mueve el cuerpo por efecto o aplicación de la fuerza, según los  cardinales.
  3. Sentido: nos indica hacia donde se aplica la fuerza, para cada dirección hay siempre dos sentidos, de los cuales se toma como positivas las fuerzas que actúan en un sentido y negativas las que actúan en sentido opuesto al positivo.
  4. Punto de aplicación: es la zona, lugar, sitio donde se ejerce o aplica la fuerza al objeto.
QUÉ ES LA FUERZA Y SU RELACIÓN CON EL MOVIMIENTO



LEYES DE NEWTON 
Las Leyes de Newton, también conocidas como Leyes del movimiento de Newton, son tres principios a partir de los cuales se explican la mayor parte de los problemas planteados por la dinámica, en particular aquellos relativos al movimiento de los cuerpos. Revolucionaron los conceptos básicos de la física y el movimiento de los cuerpos en el universo, en tanto que constituyen los cimientos no sólo de la dinámica clásica sino también de la física clásica en general. Aunque incluyen ciertas definiciones y en cierto sentido pueden verse como axiomas, Newton afirmó que estaban basadas en observaciones y experimentos cuantitativos; ciertamente no pueden derivarse a partir de otras relaciones más básicas. La demostración de su validez radica en sus predicciones... La validez de esas predicciones fue verificada en todos y cada uno de los casos durante más de dos siglos.
En concreto, la relevancia de estas leyes radica en dos aspectos:
Así, las Leyes de Newton permiten explicar tanto el movimiento de los astros, como los movimientos de los proyectiles artificiales creados por el ser humano, así como toda la mecánica de funcionamiento de las máquinas.
Su formulación matemática fue publicada por Isaac Newton en 1687 en su obra Philosophiae Naturalis Principia Mathematica.
No obstante, la dinámica de Newton, también llamada dinámica clásica, sólo se cumple en los sistemas de referencia inerciales; es decir, sólo es aplicable a cuerpos cuya velocidad dista considerablemente de la velocidad de la luz (que no se acerquen a los 300.000 km/s); la razón estriba en que cuanto más cerca esté un cuerpo de alcanzar esa velocidad (lo que ocurriría en los sistemas de referencia no-inerciales), más posibilidades hay de que incidan sobre el mismo una serie de fenómenos denominados efectos relativistas o fuerzas ficticias, que añaden términos suplementarios capaces de explicar el movimiento de un sistema cerrado de partículas clásicas que interactúan entre sí. El estudio de estos efectos (aumento de la masa y contracción de la longitud, fundamentalmente) corresponde a la teoría de la relatividad especial, enunciada por Albert Einstein en 1905.

Primera ley de Newton o Ley de la inercia

La primera ley del movimiento rebate la idea aristotélica de que un cuerpo sólo puede mantenerse en movimiento si se le aplica una fuerza. Newton expone que:
Todo cuerpo persevera en su estado de reposo o movimiento uniforme y rectilíneo a no ser que sea obligado a cambiar su estado por fuerzas impresas sobre él

Segunda ley de Newton o Ley de fuerza
La segunda ley del movimiento de Newton dice que
El cambio de movimiento es proporcional a la fuerza motriz impresa y ocurre según la línea recta a lo largo de la cual aquella fuerza se imprime.




Tercera ley de Newton o Ley de acción y reacción


Con toda acción ocurre siempre una reacción igual y contraria: o sea, 
las acciones mutuas de dos cuerpos siempre son iguales y dirigidas en 
sentido opuesto






En las Leyes de Newton y en la Dinámica toda existen otros conceptos, no menos importantes que los mencionados como son: 

Masa

La masa, en física, es la cantidad de materia de un cuerpo. Es una propiedad intrínseca de los cuerpos que determina la medida de la masa inercial y de la masa gravitacional. La unidad utilizada para medir la masa en el Sistema Internacional de Unidades es el kilogramo (kg). Es una cantidad escalar y no debe confundirse con el peso, que es una cantidad vectorial que representa una fuerza.
El concepto de masa surge de la confluencia de dos leyes: la ley Gravitación Universal de Newton y la 2ª Ley de Newton (o 2º Principio). Según la ley de la Gravitación de Newton, la atracción entre dos cuerpos es proporcional al producto de dos constantes, denominadas masa gravitacional —una de cada uno de ellos—, siendo así la masa gravitatoria una propiedad de la materia en virtud de la cual dos cuerpos se atraen; por la 2ª ley (o principio) de Newton, la fuerza aplicada sobre un cuerpo es directamente proporcional a la aceleración que experimenta, denominándose a la constante de proporcionalidad: masa inercial del cuerpo.



Peso 

En física, el peso es la fuerza con la cual un cuerpo actúa sobre un punto de apoyo, originado por la aceleración de la gravedad, cuando esta actúa sobre la masa del cuerpo. Al ser una fuerza, el peso es en sí mismo una cantidad vectorial, de modo que está caracterizado por su magnitud y dirección, aplicado en el centro de gravedad del cuerpo y dirigido aproximadamente hacia el centro de la Tierra. Por extensión de esta definición, también podemos referirnos al peso de un cuerpo en cualquier otro astro (LunaMarte, ...) en cuyas proximidades se encuentre.
Sin duda alguna, el peso es la fuerza con la que estamos más familiarizados, por nuestra experiencia diaria, al ejercerla la Tierra sobre todos los cuerpos materiales, acelerándolos, en caída libre (en ausencia del concurso de otras fuerzas). Podemos determinar el peso de un cuerpo cualquiera, de masa m, midiendo la aceleración que adquiere cuando se le deja caer libremente de modo que la única fuerza que actúe sobre él sea la de la gravedad. Desde los experimentos de Galileo, es bien conocido que la aceleración que adquiere cualquier cuerpo en caída libre, que designaremos por g, es independiente de la masa del cuerpo. El valor de esa aceleración es aproximadamente 9,81 m/s² en el nivel del mar y para las latitudes medias; entonces el peso P de un cuerpo de masa m viene dado por P = mg.



WeightNormal.svg


Peso y masa son dos conceptos y magnitudes físicas bien diferenciadas, aunque aún en estos momentos, en el habla cotidiana, el término "peso" se utiliza a menudo erróneamente como sinónimo de masa, la cual es una magnitud escalar. La propia Academia reconoce esta confusión en la definición de «pesar»: "Determinar el peso, o más propiamente, la masa de algo por medio de la balanza o de otro instrumento equivalente"


Diferencia entre  Peso y masa